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Nonlinear dynamics of the concentric, two-phase flow of two immiscible fluids in
a circular tube of variable cross-section is studied for parameter values where the
steady core–annular flow (CAF) is linearly unstable. The simulations are based on
a pseudo-spectral numerical method. They are carried out assuming axial symmetry,
that the total flow rate remains constant and that all dependent variables are periodic
in the axial direction, which includes the minimum necessary number of repeated units
so that the obtained solution is independent of this number. The time integration
originates with the numerically computed steady CAF or the steady CAF seeded
with either the most unstable mode or random small disturbances. Only a limited
number of the most interesting cases are presented. For the most part, the values
of the majority of the dimensionless parameters are such that oil flows in the centre
of the tube driven by an applied pressure gradient against gravity, whereas water
is flowing in the annulus. It is shown that, whereas the steady (unstable) solution
may indicate that the heavier water flows countercurrently with respect to the oil,
the time periodic (observable) solution may indicate the same, albeit at a much
smaller core flow rate or that concurrent flow occurs. This is due to the water being
trapped between the large-amplitude interfacial waves that are generated and being
convected by the oil. It is also shown that increasing the inverse Weber number
increases the wave amplitude to the point that the flow of the core fluid may become
discontinuous with a mechanism that depends on the viscosity ratio between the
two fluids. Increasing the amplitude of the sinusoidal variation of the tube leads to
a combination of travelling and standing waves, which interact to produce a time
periodic solution with a long period associated with the time it takes the travelling
wave to travel through the computational domain and a second much shorter period
that is related to their interaction time. Qualitative agreement has been obtained upon
comparing our numerical simulations with limited experimental reports, even though
the experimental conditions were not identical to those in our model.

1. Introduction
There are a large number of technologically important applications where flow of

two immiscible fluids takes place. One such example is the lubrication of oil by water.
For the transportation of very viscous oil in pipelines, core–annular flow (CAF) can
be an attractive alternative to heating or diluting the oil with its lightweight fractions.
In lubricated CAF, the centrally flowing oil is surrounded by a less viscous fluid, such
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as water, which forms an annular layer. This flow pattern requires specific operating
conditions, and reduces the pressure drop over the pipeline to almost the same order
of magnitude as when only the less viscous fluid is present (Preziosi, Chen & Joseph
1989). In a second situation, two fluids flow concurrently through narrow passages
in processes aimed at recovering oil from sedimentary rocks by injecting primarily
water or steam. The displacing fluid follows the path of minimum resistance, that is,
away from solid surfaces, and, usually, it does not remove the oil that adheres to
corners and crevices in the rock. In a final example, concurrent two-phase flow of
hydrogen and hydrocarbons takes place through millimetre-scale tortuous passages
created by catalytic particles, which promote reforming oil and its byproducts in
certain trickle bed reactors. In this case, the gas phase flows through the narrow
flow paths, which are created by the catalytic particles, well wetted by oil, as they are
packed inside the reactor. Unfortunately, the pores between sedimentary rocks and the
interstices in packed beds do not provide a pathway of uniform cross-section and it is
conceivable that this geometric non-uniformity may induce or modify already possible
flow instabilities. It is well known that different flow regimes exist in a packed bed
(trickling, pulsing, spray, etc.) and they affect greatly the reactor parameters, namely
pressure drop, heat and mass transfer coefficients, reaction rate and liquid holdup.
As a result, the prediction of the operating conditions leading to these flow regimes
is critical in reactor design and operation. In fact, Kouris et al. (1998) showed that
the effectiveness factors of the chemical reactions in hydrodesulphurization processes
are greatly enhanced when the reactor operates in the pulsing flow regime owing to
the increased average mass transfer coefficient of the gas phase.

When the assumption of a straight tube can be made, then there is analytical
expression of the steady-state solution and, as a result, linear and weakly nonlin-
ear stability analysis can be performed. More specifically, Hickox (1971) studied
the stability of an axisymmetric, laminar, primary flow composed of two fluids flow-
ing concentrically in a straight tube. He assumed that the fluids are incompressible
with different viscosities and densities and examined the stability of the asymptoti-
cally long wavelength modes. His method was similar to the one used by Yih (1967)
in investigating the effects of viscosity stratification in plane Couette and Poiseuille
flows. Hickox (1971) concluded that, since instability is manifested however small
the Reynolds numbers, turbulence is not expected as an end result of instability. He
further anticipated that the exponential growth would not continue beyond the linear
regime, but that finite-amplitude waves are possible. Hooper & Boyd (1983) examined
the stability of the concurrent plane Couette flow of two superposed viscous fluids in
an infinite region neglecting surface tension. They showed that this flow is unstable to
short-wavelength disturbances. Hooper (1989) examined the problem when the lower
fluid is of finite depth bounded below by a solid boundary, while the upper fluid is of
infinite extent. In that case, the flow is unstable when the lower fluid is also the more
viscous one and stable otherwise. Yiantsios & Higgins (1988) extended the analysis
performed by Yih (1967) examining the stability to disturbances of any wavelength.
They have identified not only the long-wavelength unstable modes reported by Yih,
but also short-wavelength unstable modes which arise with increasing Re and are as-
sociated with Tollmien–Schlichting waves. The characteristic of Tollmien–Schlichting
waves in a single-phase flow with a free surface is that they are stable according to
Rayleigh’s inviscid criterion for capillary instability, but they are unstable at suffi-
ciently large Reynolds number (Drazin & Reid 1981). Preziosi, Chen & Joseph (1989)
have studied extensively the linear stability of the axisymmetric core–annular flow
by varying the viscosity and volume ratios of the two fluids, the Reynolds and the
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Ohnesorge numbers. They have verified that this flow is generally unstable, except
when the annular region is occupied by the less viscous fluid, it is sufficiently thin
and the Reynolds number varies within a limited range which depends on the other
flow and fluid parameters.

The weakly nonlinear dynamics of the concentric fluid arrangement in a straight
tube was studied first by Hammond (1983) who assumed a base state with static fluids
and that the annular fluid is thin. Hammond used the long-wave approximation and
derived an evolution equation of the interface, which predicted film rupture, when it
was solved beyond the limits of validity of the linear analysis. Subsequently, Frenkel
et al. (1987) examined the stability of Poiseuille flow of two fluids, which were as-
sumed to have equal properties leaving only surface tension to act on them, but
retained the previous geometrical restriction. This leads to decoupling the flow in
the core from the flow in the annular film. The dynamics of the interface were
determined by the Kuramoto–Sivashinsky equation with both stabilizing and desta-
bilizing terms related to surface tension and a nonlinear term related to the base
flow; the coupling of these terms leads to growth and subsequent saturation of in-
itial disturbances. In particular, they identified in their film evolution equation the
second derivative of the interface with respect to the axial distance as inducing
the usual capillary instability, sinusoidal at inception. As this deformation increases,
nonlinear convection induces asymmetry and steepening of the wave, but then, the
fourth derivative of the interface with respect to the axial distance, arising from
the curvature operator, becomes important and prevents breakup. Papageorgiou,
Maldarelli & Rumschitzki (1990), have assumed pressure-driven CAF in a straight
tube, making an effort to include the dynamics of both phases, and have obtained
numerical solutions to their final model equations. Their equations are augmented
versions of the Kuramoto–Sivashinsky equation with integral terms arising from the
flow in the core and capture the weakly nonlinear evolution of the perfect CAF.
Kerchman (1995) has extended the previous analysis by removing the constraint that
the deviation of the interface from its initial value is smaller than the thickness
of the annular film, assuming instead, that interfacial shear is negligible. The fully
nonlinear dynamics of CAF have been examined, Li & Renardy (1999) and Kouris
& Tsamopoulos (2001b, 2002), by solving the axisymmetric Navier–Stokes equations
in both space and time. They have examined the effect of the Reynolds number, the
surface tension and the viscosity ratio. In the first two reports, assuming that oil
flows in the core and water in the annulus, interfacial waveforms were computed,
which have a ‘bamboo’ shape; the speed and the wavelength of which are very well
correlated with linear stability theory as well as with experiments. In the third report,
the less viscous fluid is centrally located giving rise to ‘sawtooth’ waves with wave-
length, amplitude and other characteristics that depend on fluid properties and flow
conditions.

On the other hand, when the tube radius depends on the axial distance, the steady-
state solution does not admit an analytical solution and both components of the
velocity vector (axial and radial) of either fluid depend on the axial and the radial
distance. In order to capture the most unstable mode of the governing equations
a fully coupled eigenvalue problem must be solved, in contrast to the straight-tube
case. In a straight tube, the axial dependence of the eigenvector is known beforehand
and thus, only a one-dimensional eigenvalue problem, in the radial direction, should
be solved for every axial wavenumber. For this reason, even the linear stability of
CAF in a constricted tube was not thoroughly examined until recently. Kouris &
Tsamopoulos (2000, 2001a), assuming moderate constriction ratios with and without
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employing the lubrication approximation, have examined how the neutral stability
curves depend on the effect of surface tension, which is measured either by the
inverse Weber number or the inverse Ohnesorge number, the Reynolds number,
the viscosity and density ratios of the two fluids as well as the volume fraction of
the core fluid. They have also examined the effect of gravity when the two fluids
are of different densities and the effect of the number of unit cells that comprise the
undulating tube. The weakly nonlinear stability analysis of CAF in an undulating
tube is still lacking. Kouris & Tsamopoulos (2000) have integrated, in both space
and time, a simplified set of equations derived using the lubrication approximation.
However, because of this approximation they focused their attention only to small Re,
moderate constriction ratio and viscosity and density ratios close to unity, i.e. close
to the neutral stability curves. Thus, they have verified that the unstable interfacial
modes, after experiencing an exponential growth in time, finally saturate giving rise
in this way to finite-amplitude interfacial waves.

Here, we present the solution of the axisymmetric time-dependent Navier–Stokes
equations, relaxing in this way the lubrication approximation and examining thor-
oughly the effect of various parameters in the time evolution of CAF in constricted
tubes deep into the unstable domain, i.e. away from the corresponding neutral curve
(Kouris & Tsamopoulos 2001a). More specifically, we examine the effect of the
Reynolds number assuming the physical properties that correspond to the oil/water
CAF assuming that the ratio of the minimum to the maximum radius of the tube
is equal to either 0.8 or 0.9. For the same values of the physical properties and in
a straight tube, the so-called ‘bamboo’ waves arise (Li & Renardy 1999; Kouris &
Tsamopoulos 2001b). This type of wave is an axially travelling one, characterized
by sharp crests, flat troughs and a constant wave speed. These structures are well
documented in the experiments of Bai, Chen & Joseph (1992). We also examine the
effect of the other parameters such as viscosity ratio, Froude number and surface
tension. When surface tension takes large values, the resulting waves have a ‘sawtooth’
shape and increasing it further causes breakup of the fluid/fluid interface. On the
other hand, the viscosity ratio cannot take values much larger than unity, because
then the interface tends to break up more readily, which cannot be accommodated
by the otherwise most efficient solution method we have chosen.

The remainder of this paper is organized as follows. The governing equations,
which depend on nine dimensionless parameters: the Reynolds, Weber and Froude
numbers, the ratios of density, viscosity and volume of the two liquids as well as
the constriction and aspect ratios and the number of unit cells, are presented in
§ 2. Results and discussion are given in § 3, § 4 and § 5, comparison with available
experiments is made in § 6 and conclusions are drawn in § 7.

2. Governing equations
We examine the incompressible axisymmetric core–annular flow (CAF) of two

Newtonian fluids in an undulating tube of circular cross-section, as shown in figure 1.
In what follows, we use the symbol ˆ to denote dimensional quantities, t̂ to denote the
time variable and er , eθ and ez to denote the unit normal vectors of the cylindrical

coordinate system (r̂, θ̂, ẑ), respectively. The radius of the tube, R̂2, varies sinusoidally
between the maximum, R̂max, and the minimum, R̂min, value within the axial distance
L̂, and the number of the unit cells that comprises the computational domain is
denoted by N. The axial variation of the radius of the tube is described by the
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Figure 1. Schematic presentation of the flow geometry composed of two unit cells, showing the
tube wall and the fluid/fluid interface.

following equation:

R̂2(ẑ) =
R̂max + R̂min

2
− R̂max − R̂min

2
cos

(
2πẑ

L̂

)
, (0 6 ẑ 6 NL̂). (2.1)

The centreline of the pipe is located at r̂ = 0, the region 0 6 r̂ 6 R̂1(ẑ, t̂) is occupied
by the core fluid (fluid 1) with viscosity and density (µ̂1, ρ̂1), whereas the annular fluid
(fluid 2) with viscosity and density (µ̂2, ρ̂2) is located in the region R̂1(ẑ, t̂) 6 r̂ 6 R̂2(ẑ).
The position vector of the fluid/fluid interface is:

R̂1 = erR̂1(ẑ, t̂) + ez ẑ. (2.2)

The radial and axial components of the axisymmetric velocity vector of each fluid are
denoted by:

Û i = (Ûi, 0, Ŵ i) = erÛi + eθ0 + ezŴ i. (2.3)

The equations that govern the motion of both fluids are the mass, equation (2.4), and
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momentum, equation (2.5), balances of either phase

∇ · Û i = 0, (2.4)

ρ̂i

(
∂Û i

∂t̂
+ Û i · ∇Û i

)
= −∇P̂i + ∇ · τ̂ i − ρ̂igez, (2.5)

where gravity acts along the axis of the tube to retain the axial symmetry, downward,
in the −ez direction and against the flow of the core fluid. The stress tensor of

each Newtonian fluid, i, is defined by τ̂ i = µ̂i(∇Û i + ∇ÛT

i ). The kinematic condition,
equation (2.6), governs the motion of the fluid/fluid interface:

∂R̂1

∂t̂
+ Û i · ∇R̂1 = Û i(R̂1(ẑ, t̂), ẑ, t̂). (2.6)

The axisymmetric set of equations (2.4)–(2.6) are solved subject to the following
boundary conditions in the radial direction:

Û1 =
∂Ŵ 1

∂r̂
= 0 on r̂ = 0, (2.7)

Û 2 = 0 on r̂ = R̂2(ẑ), (2.8)

‖Û‖ = 0 on r̂ = R̂1(ẑ, t̂), (2.9)

(−‖P̂‖ − 2HT̂ )n+ ‖τ̂‖ · n = 0 on r̂ = R̂1(ẑ, t̂). (2.10)

The above boundary conditions state that: the velocity field remains bounded at the
centreline, (2.7); zero at the solid wall, (2.8); continuous across the fluid/fluid interface,
(2.9); whereas the interfacial forces exerted by either phase balance each other in the
direction tangent to the interface and balance capillarity in the direction normal to
it, (2.10). In this balance, −2H = ∇ · n|r=R̂1

is twice the mean surface curvature of the

fluid/fluid interface and T̂ is the coefficient of the interfacial tension. The unit vectors

normal and tangent to the surface r̂ = R̂1(ẑ, t̂) are denoted by n, and t, respectively,
with the normal vector pointing from fluid 1 to fluid 2. By ‖ · ‖ = (·)1 − (·)2 is

denoted the jump of the bracketed quantity over the interface r̂ = R̂1(ẑ, t̂). In the
axial direction, we impose that the velocity field, the stress tensor of both fluids as
well as the fluid/fluid interface are periodic functions with period the length of the

computational domain, NL̂. In addition to the previous boundary conditions, and
so that the set of equations (2.4)–(2.6) is well defined, we impose that the volume
fraction of the core fluid and the total volumetric flow rate of both phases remain
constant in time. These conditions are imposed instead of the volumetric flow rate of
each phase separately. The latter are inconsistent with the periodicity that we impose
between the two ends of the tube and the expected time-periodic solution, and so
they give non-converging or physically unrealistic solutions.

Equations (2.4)–(2.6) together with the boundary conditions (2.7)–(2.10) are made
dimensionless by scaling the radial coordinate with the maximum radius of the tube
R̂max and the axial coordinate with the length L̂/2π. The characteristic velocity in the

axial direction Ŵo is chosen so that the total dimensionless volumetric flow rate of
both fluids equals unity, that is,

Ŵo =
1

R̂
2

max

(∫ R̂1

0

r̂Ŵ 1 dr̂ +

∫ R̂2

R̂1

r̂Ŵ 2 dr̂

)
. (2.11)
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It can be shown easily that Ŵo is half the average velocity computed at the axial
distance where the radius of the tube is maximized. The pressure as well as the com-
ponents of the stress tensor of each fluid are made dimensionless using the inertial
pressure scale ρ̂1Ŵo

2, whereas time is scaled using the time required by both fluids
to travel the characteristic axial length given the adopted velocity Ŵo, i.e. L̂/2πŴo.
The resulting set of equations is solved in the streamfunction–vorticity formulation

and the characteristic values of the streamfunction and of the vorticity are ŴoR̂
2

max

and Ŵo/R̂max, respectively. After introducing the above scales into (2.1)–(2.10), nine
dimensionless numbers appear. The geometry is characterized by the constriction
ratio α = Rmin/Rmax, the aspect ratio Λ = 2πR̂max/L̂ and the number of the unit cells
N. The physical properties of both fluids as well as the flow field give rise to the
following six dimensionless numbers: the viscosity ratio µ = µ̂2/µ̂1; the density ratio

ρ = ρ̂2/ρ̂1; the Reynolds number Re = Λρ̂1R̂maxŴo/µ̂1; the inverse Weber number

W = T̂ (ρ̂1Ŵo
2R̂max); the inverse Froude number F = (ρ − 1)gR̂max/(ΛŴo

2) and the

core volume fraction V = V̂C/V̂T which is defined as the ratio of the volume occupied

by the core fluid V̂C to the total internal volume of the tube V̂T . It is worth mentioning
that gravity enters the problem through the density difference between the two fluids.
The effective gravity parameter F is introduced only in the equations of motion of
the annular fluid and not in those of the core fluid, since its effect on the core fluid is
incorporated in the definition of the generalized pressure variable, which is composed
of the usual pressure term and the hydrostatic variation of the pressure in the bulk
of the core fluid.

In order to solve numerically the above time-dependent partial differential
equations, we transform them by introducing the streamfunction and the vorticity of
each fluid and then we employ the following non-orthogonal body-fitted coordinate
transformation (r, z, t)→ (x1, x2, τ).

Domain of core fluid: x1 = 1− 2
r

R1(z, t)
, x2 = z, τ = t, (2.12)

Domain of annular fluid: x1 = −1 + 2
r − R1(z, t)

R2(z)− R1(z, t)
, x2 = z, τ = t. (2.13)

This normalization is essential in order to transform the boundaries of the regions
that each fluid occupies to coordinate lines in the new transformed space, given
the spectral method of solution that we have adopted and in order to correctly
discretize the physical domain. The bounds of the new independent variables are the
following:

−1 6 x1 6 1, 0 6 x2 6 2πN, τ > 0 (2.14)

We approximate every dependent variable using Chebyshev polynomials and Fourier
modes in the x1 and x2 directions, respectively, whereas the grid points in these
directions are defined by the following relationships:

x1k = cos

(
π
k

K

)
, (0 6 k 6 K), x2l =

2πl

L+ 1
, (0 6 l 6 L) (2.15)

where K(L) is the highest-order Chebyshev polynomial (Fourier mode) that we use.
Every dependent variable in the transformed space is approximated as a sum of
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products of Chebyshev polynomials and Fourier modes, that is,

f(x1, x2, τ) =

K∑
i=0

L∑
j=0

aij(τ) Ci(x1) Fj(x2). (2.16)

The derivative of each function in (2.16), is evaluated by differentiating term
by term its spectral expansion, whereas the unknown functions, aij(τ), are evalu-
ated by exactly satisfying the differential equations at the collocation points and
at every time step. By using K and L collocation points in the radial and axial
direction, respectively, the total number of unknowns are 4KL + L where KL are
the unknowns of either the streamfunction or the vorticity equation in each phase
and L is the number of unknowns of the interface. Owing to the fairly compli-
cated form of the governing equations, the Jacobian matrix is formed numerically
using one-sided finite differences. We have found that, when the tube is composed
of one unit cell, 65 Fourier and 13 Chebyshev modes are adequate to resolve the
flow field of both fluids, whereas, when the tube is composed of two unit cells, 111
Fourier and 11 Chebyshev modes are required. The time integration is performed
using the implicit, second-order accurate, Adams–Moulton method with constant
time step of typical size 0.5× 10−3. The size of the time step was chosen in order to
guarantee accuracy (after performing a number of numerical experiments) without
increasing the computational cost very much. In order to reduce the time required to
compute the solution at each time step, we adopt the modified Newton–Raphson tech-
nique. According to it, we use the LU-decomposed Jacobian matrix from a previous
time step in order to find the solution at the current time step and we update it only
when the number of iterations exceeds 200. Additional information concerning the
choice and other details of the numerical method of solution, its convergence rate
as well as comparison of linear with nonlinear results can be found in Kouris et al.
(2002). A typical calculation required about 10 days of CPU time in an ALPHA-DEC
DS-20 machine with two processors.

Generally, our time-dependent calculations are initialized as follows. First, we
compute the steady solution given the dimensionless numbers and, then, this steady
state is used as initial condition to the initial-boundary-value problem. In all
examined cases, an independent stability analysis of the steady solution has been
performed in order to determine whether the steady solution is linearly unstable
and how well the linear temporal frequencies are correlated with those predicted
dynamically.

3. Large constriction ratio (a = 0.9): effect of Re on oil – water upflow
In this first set of three dynamic simulations we use values of the dimensionless

numbers that correspond to the case where oil flows in the core and water in the
annulus. More specifically, we use the physical properties for these two fluids reported
by Bai et al. (1992), who conducted experiments of CAF in a straight tube. We assume
that the viscosity and the density of oil are µ̂1 = 6.01 poise and ρ̂1 = 0.905 g cm−3,
respectively, whereas the properties of water are µ̂2 = 0.01 poise and ρ̂2 = 0.995 g cm−3.
The coefficient of interfacial tension of this pair of fluids is T̂ = 8.54 dyn cm−1. Using
these properties, we compute the viscosity and the density ratios of the two fluids,
which are equal to 0.00166 and 1.09945, respectively. Assuming that the acceleration
due to gravity is g = 981 cm s−2 we compute the Galileo Ga and the inverse Ohnesorge



Core–annular flow in a periodically constricted circular tube. Part 2 189

0

6

5

4

3

2
1 2 3 4 5

Time

C
or

e 
fl

ow
 r

at
e

Figure 2. Time evolution of the core flow rate
(α, Λ,N, V , µ, ρ, Re,W , F) = (0.9, 1, 1, 0.553, 0.00166, 1.09945, 0.01, 1020, 2389.6).

J numbers using the following relationships:

Ga =

(
ρ̂1

µ̂1

)2

R̂
3

2g = 2.4028, J =
ρ̂1T̂ R̂2

µ̂2
1

= 0.102. (3.1)

The benefit of setting the values of these dimensionless numbers is that they depend
only on the physical properties of the fluids in contrast to W and F , which also depend
on the characteristic velocity. By combining J and Ga with Re, we can compute the
inverse Weber and the inverse Froude numbers as follows:

W = J(Λ/Re)2, F = Ga(ρ− 1)Λ/Re2. (3.2)

So, in the first three numerical experiments, we have varied Re, while keeping Ga and
J constant. More specifically, in all three cases, we have set (α, Λ,N, µ, ρ, J, Ga, V ) =
(0.9, 1, 1, 0.00166, 1.09945, 0.102, 2.4028, 0.553) and varied Re. The dimensionless num-
bers that characterize the geometry correspond to an undulating tube positioned
vertically with the core fluid flowing upwards against gravity. The computational
domain is composed of one cell with its minimum radius only 0.9 times its maximum
radius, while its length is approximately 6.28 times its maximum radius. It is worth
pointing out that for the present values of the physical parameters, the perfect CAF
in a straight tube is unstable and the waveform that results after saturation of the
instability resembles the ‘bamboo’ shape; (see Bai, Kelkar & Joseph 1996; Li &
Renardy 1999; Kouris & Tsamopoulos 2001b). The goal of this analysis, in addition
to investigating the effect of the various dimensionless numbers on the CAF in a
constricted tube, is to find out whether this new geometry interferes with the above
mentioned waves and, if it does, in which way it modifies them.

3.1. Core fluid with small Reynolds number (Re = 0.01, case 1)

Figures 2 and 3 correspond to Re = 0.01, while using relationships (3.1)–(3.2) the
inverse Weber and the inverse Froude numbers are found to be equal to 1020 and
2389.6, respectively. The unstable eigenvalues of the steady solution that corresponds
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Figure 3. Flow fields that correspond to (a) the steady solution, (b) t = 4.313, (c) t = 4.403,
(d ) t = 4.533 (e) t = 4.703 (α, Λ,N, V , µ, ρ, Re,W , F) = (0.9, 1, 1, 0.553, 0.00166, 1.09945, 0.01, 1020,
2389.6). In this and in all subsequent figures the mean flow direction is to the right and (except for
figures 13 and 14) gravity points to the left.

to the above values of the dimensionless numbers together with those for the next
two cases are shown in table 1. Since two modes have eigenvalues with positive real
parts, the steady flow is unstable and, thus, physically unrealizable.

Figure 2 and the similar figures that are presented hereinafter show the time
evolution of the core flow rate Q1 computed at the tube entrance, which is taken
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Unstable eigenvalues

Number Case 1 Case 2 Case 3

1 5.702± 25.07i 0.869± 1.819i 0.6228± 2.287i
2 2.349± 50.03i 1.523± 7.702i 1.017± 6.366i
3 — 1.281± 13.37i 0.9728± 10.57i
4 — 0.639± 18.93i 0.7032± 14.77i
5 — — 0.3489± 18.90i

Table 1. Unstable eigenvalues for (α, Λ,N, µ, ρ, J, Ga, V ) = (0.9, 1, 1, 0.00166, 1.09945, 0.102, 2.4028,
0.553); and case 1: Re = 0.01, W = 1020, F = 2389.6; case 2: Re = 0.1, W = 10.2, F = 23.9;
case 3: Re = 0.25, W = 1.632, F = 3.823.

to be at the minimum tube radius. The computation of the instantaneous core flow
rate at a certain axial distance is not representative of its values for the whole
domain as this function, in addition to being time dependent, is also dependent on
the axial distance at which it is computed. However, we use this function as a tool in
order to identify instability, to compute temporal frequencies and to identify whether
instability has fully saturated. When conclusions are drawn with regard to the core
flow rate corresponding to a time periodic solution, the core flow rate averaged in the
axial distance, 〈Q1〉, as well as averaged in both the axial distance and time {Q1}, are
computed too. Figure 2 shows that the flow departs from the linearly unstable steady
solution, which is used as initial condition, and after a short transient (t < 2.1) reaches
an oscillatory state of constant amplitude, i.e. a stable limit cycle. In this case, Q1 varies
between the values 2.682 and 4.258, with {Q1} = 3.28, and the core flow rate that
corresponds to the steady solution is equal to 5.098. The oil flow rate in figure 2 takes
values above unity, although we impose a value of 1 on the total dimensionless flow
rate, because oil and water flow countercurrently. This results in a positive volumetric
flow rate for the oil and a negative volumetric flow rate for the water and thus, the
oil flow rate is above unity compensating for the negative flow rate of the water. The
fact that {Q1} is smaller than its value for the steady solution (3.28 < 5.098) coupled
with the fact that the volume which each fluid occupies inside the tube is constant
and, thus, the average flow cross-section of either phase is constant too, leads to
the conclusion that the mean core velocity is smaller in the nonlinear regime than
in the perfect CAF. In particular, the mean core velocity in the nonlinear regime is
reduced by more than 35% compared to that for the steady solution. This conclusion
is also in accordance with results obtained by Li & Renardy (1999) and Kouris &
Tsamopoulos (2001b), who have studied the nonlinear dynamics of the CAF in a
straight tube for similar values of the dimensionless numbers, albeit for concurrent
flow only. They have reported that the inception of instability and its subsequent
saturation, which gives rise to ‘bamboo’ waves, leads to a considerable decrease in
both the mean core velocity and the holdup ratio, i.e. the ratio of the mean residence
time of the annular fluid to that of the core (see also Joseph & Renardy 1993).

Using figure 2, we compute the temporal oscillation frequency, which is 24.933,
well before the abrupt transition from the linear to the nonlinear regime (t ∼ 1) and
becomes 12.928 after saturation. The comparison of these values with the results
presented in table 1 shows that although the graphically computed linear frequency
approaches quite well that using the linear theory (eigenvalue 1 in table 1) within an
error 0.5% only, the linear frequency is twice as large as the nonlinear one. Although
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the linear theory is not expected to predict fully nonlinear phenomena accurately,
especially when the system is far from the initial state for which the eigenvalues have
been computed, such a large deviation is puzzling. Moreover, Kouris & Tsamopoulos
(2000, 2001b, 2002) found that the nonlinear temporal frequency in all cases does
not deviate considerably from the linear one. What has changed between those
cases and here is that now we deal with counterflow of the two phases. The bifurcating
travelling waves saturate at large amplitudes, which in turn are strongly affected by
the sinusoidally varying solid wall and, thus, the linear results become inaccurate.

Figure 3(a) shows the flow field that corresponds to the steady solution. The
fluid/fluid interface is denoted by a thicker line, and the velocity vectors are plot-
ted in addition to the streamlines. The velocity vectors, which are always tan-
gent to the computed streamlines, give us a clear indication of the intensity of
the flow field, something which cannot be visualized otherwise. The value of the
streamfunction at the solid wall is equal to 0, whereas that at the centreline is
equal to −1 and, thus, the dimensionless total flow rate indeed is equal to 1.
The closed streamline, which can be seen directly above the interface in the re-
gion occupied by water, is symmetrically located around the wave trough. It is
generated because of the counterflow of the two fluids, which is also verified by
the velocity vectors in the same figure showing oil and water flowing in opposite
directions. More specifically, fluid particles in the region occupied by the core fluid,
i.e. below the interface, are flowing from left to right, while fluid particles in the
region above the closed streamline are flowing in the opposite direction. Very close
to the interface, particles of the annular fluid are sheared by the core fluid, whereas,
away from it, they are forced to change flow direction owing to the effect of gravity,
which points to the left. Thus, this mixed flow of water is caused by the adverse
action of gravity, which forces the annular fluid, the heavier of the two fluids, to
flow in the direction opposite to that of the core fluid. The steady interface shape,
which is composed of only one crest and varies between the radial positions 0.605
and 0.828, exhibits a pronounced maximum to the left of the maximum tube radius
(at the mid-plane). This asymmetry is not caused by fluid inertia, which is small here,
since, if that were the case, the crest of the interface should appear to the right of
the mid-plane of the tube. Instead, it is caused by gravity, which pulls the water
backwards, against the oil flow, displacing in this way the maximum of the interface
to the left of the mid-plane of the tube. Had the tube wall been straight and for
the same dimensionless parameters, the steady interface would be a straight line
positioned at radial distance 0.7438. Apparently, this very small variation (10%) of
the solid wall from being straight causes disproportionately larger variation (∼ 25%)
of the steady interface from that corresponding to the perfect CAF in a straight tube.
To obtain this steady solution requires continuation with a fairly small step in the
constriction ratio (∆α ≈ 0.025), while solving the nonlinear algebraic set of equations,
arising from the discretization of the governing equations, with the Newton–Raphson
method. This observation indicates again that the flow field that corresponds to the
perfect CAF in a straight tube is quite different from that in a tube of sinusoidally
varying cross section.

Figures 3(b)–3(e) show four different snapshots of the flow field of the time periodic
solution within one temporal period, after the system has reached a stable limit cycle.
These interfacial shapes are composed of two crests in contrast to the steady solution,
which has only one. The fact that the time-dependent interface attains a more
wavy form and its variation is larger compared to the steady solution results in
the enhancement of the transportation of water inside the troughs of the interface, in
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the flow direction of the oil. This, in turn, results in the deceleration of the oil and thus,
the oil flow rate is decreased, a conclusion that is in line with the already presented
results in conjunction with figure 2. The instantaneous axially averaged core flow
rates are found to be 〈Q1〉 = 3.313, 3.454, 3.130 and 3.301, respectively, whereas Q1

attains its maximum, an intermediate, its minimum and again an intermediate value
at times corresponding to figures 3(b)–3(e). It is worth noting that when Q1 attains
its maximum (minimum) value, figure 3(b) (3d ), a crest (trough) of the interface
enters the tube. An important observation is that although the closed streamlines in
figure 3(a) are located in the region occupied by the water adjacent to the troughs of
the interface, this does not hold in figures 3(b)–3(e), as here they are always located
at its crests. Apparently, the crests of the interface are now capable of dragging less
water in the flow direction of the oil than its troughs in contrast to the steady solution,
where crests and troughs drag equal amounts of water. This conclusion is also in
line with the observation that whenever a crest of the interface enters the tube, Q1 is
maximized and when a trough of the interface enters the tube, the opposite happens.
In figures 3(b)–3(e), it can be seen that large (small) annular (core) velocities occur
above (below) the crests of the interface and by comparing figures 3(b), 3(c) and 3(e)
we conclude that the larger the amplitude of the interface the smaller the velocity
of the crest. For this reason the left-hand crest in figures 3(b)–3(d ) is drifting faster
than the right-hand crest and, thus, the two crests appear to approach each other.
On the other hand, when the right-hand crest is forced to decrease its amplitude
owing to the tube constriction it accelerates and, thus, the distance between the two
crests increases again. This out-of-phase sequence, which is repeated periodically in
time, gives rise to a periodic attraction and repulsion of the two crests in space.
Furthermore, figures 3(b)–3(e) show that the closed streamlines at the crests of the
interface do not interact strongly with the open ones above them since the Reynolds
number is very small (Re = 0.01� 1). As the crests of the interface are convected
downstream, the closed streamlines around the crests push the open streamlines above
them towards the solid wall, thus increasing the water velocity. At axial distances
where the troughs of the interface are located, the open streamlines bend downward,
their distance increases and the water velocity decreases.

Clearly, there is a great difference between this type of wave and the ‘bamboo’
waves reported by Li & Renardy (1999) and Kouris & Tsamopoulos (2001b), as the
latter appear to be steady or nearly steady for an observer moving with the wave
velocity. This is not the case here, as the presence of the undulating solid wall forces
the wave to deform as it travels downstream and thus, its wave speed changes in time.
It is worth noting that Kouris & Tsamopoulos (2002) have shown that the viscosity
contrast of the two fluids is responsible for modifying the speed of the bifurcating
waves compared to that of the undisturbed interface. More specifically, they have
reported that, when the more viscous fluid is centrally located, the wave speed of
the saturated travelling wave is always less than that of the undisturbed interface. In
order to examine whether this holds in the case of the CAF in a constricted tube,
we compute the axially averaged interfacial velocities, denoted as 〈ui〉, for both the
steady solution, figure 3(a), as well as for the solution shown in figures 3(b)–3(e).
These velocities are found to be equal to 21.144, figure 3(a); 13.422, figure 3(b);
14.062, figure 3(c); 13.381, figure 3(d ) and 13.597, figure 3(e). The comparison of
these velocities reveals that indeed the saturated wave travels with a time-dependent
velocity and this velocity is always much smaller than that of the steady solution,
in accordance to what has been observed in the case of the CAF in a straight
tube.
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Figure 4. (a) Time evolution of the core flow rate and (b) time evolution of the interface
with the first snapshot corresponding to t = 16.4 with time steps of 0.4. The time integra-
tion has been initiated using the perfect CAF subject to very small and random disturbances
(α, Λ,N, V , µ, ρ, Re,W , F) = (0.9, 1, 2, 0.553, 0.00166, 1.09945, 0.01, 1020, 2389.6).
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Additionally, we have examined the effect of the length of the domain by increasing
the number of unit cells that comprise the undulating tube. More specifically, we
have set N = 2, instead of 1, doubling the length where periodic boundary conditions
are applied, and we have reintegrated the governing partial differential equations. The
time integration has been initiated using the steady solution, which is not affected
by the increase of N, seeded with the most critical eigenvector corresponding to the
above case, N = 1. The time evolution of the core flow rate, the velocity field and the
shape of the bifurcating travelling wave remain exactly the same as those presented
in figures 2 and 3 and for this reason they are not shown again. Thus, we believe that
the solution already presented is indeed physically realizable and independent of the
number of unit cells that comprise the computational domain.

In addition to increasing the number of the unit cells, we have changed the way
that we initialize our time-dependent calculations. More specifically, employing the
above-mentioned values of the dimensionless numbers and N = 2 we have repeated
our calculations using as initial condition the steady solution seeded with random
disturbances of very small amplitude. The time evolution of the core flow rate for this
case is shown in figure 4(a). Clearly, the time evolution of the core flow rate does not
follow a pattern, in contrast to what was presented in relation to figure 2. Although
at t = 0 the flow rate is the same as that corresponding to figure 2, it takes the same
short incubation period to deviate from that value and exhibit chaotic behaviour,
t > 1, varying between the values 1.95 and 5.92, with {Q1} = 3.46. Comparing the
values of {Q1} that correspond to the different types of initial condition (3.28 and
3.46) that we have used, we conclude that these values deviate by only 5%.

The time evolution of the interface can also be seen in figure 4(b) where the
first snapshot corresponds to t = 16.4 whereas the time difference between successive
ones is ∆t = 0.4. Now that the time integration has been initiated with a different
initial condition, the saturated interfacial shape is completely different in terms of the
number of crests that the wave is composed of. The number of crests of the interface
change unpredictably, since for small times the interface is composed of only 2 crests
whereas at later times it varies between 2 and 4. On the other hand, the amplitude
of this wave is fairly similar to that shown in figures 3(b)–3(e). By plotting snapshots
of the streamlines (Kouris 2000) it can be seen that, for the most part, in the core fluid
they smoothly follow the fluid/fluid interface, whereas closed streamlines arise above
both the troughs and the crests of the interface in the annular fluid. This strong effect
of the initial condition on the dynamics of the saturated travelling wave is not totally
unexpected. Frenkel et al. (1987), Kawahara (1983), Papageorgiou et al. (1990) and
Kerchman (1995) have examined the nonlinear dynamics of CAF in a straight tube
with the less viscous fluid centrally located and have found similar behaviour. More
specifically, Kouris & Tsamopoulos (2002) have found that when the steady solution
was seeded with the most unstable eigenvector, a steadily travelling wave resulted,
whereas, when the steady solution was disturbed randomly, a chaotic solution was
obtained.

3.2. Core fluid with intermediate Reynolds number (Re = 0.1, case 2)

The result of case 1, namely that the inception of nonlinear travelling waves allows
them to drag more water inside their troughs decreasing in this way the oil flow rate
in comparison to the steady solution, leads us to investigate whether counterflow of
two fluids may occur in the linear regime and concurrent flow in the nonlinear one.
In order to achieve this, the effect of gravity should be decreased and, for the same
pair of fluids, i.e. constant Ga, the Reynolds number must be increased. Figures 5
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Figure 5. Time evolution of the core flow rate
(α, Λ,N, V , µ, ρ, Re,W , F) = (0.9, 1, 1, 0.553, 0.00166, 1.09945, 0.1, 10.2, 23.9).

and 6 (case 2) show the time evolution of the core flow rate for the same values
of the dimensionless numbers as in case 1, except for the Reynolds number, which
is now equal to 0.1. The core flow rate that corresponds to the steady solution is
equal to 1.279, and that of the annular fluid is −0.279, which are very different from
those corresponding to case 1 (5.098 and −4.098, respectively). This result should
be expected, since the increase in Re decreases F and thus, the force that induces
backflow of the water decreases too. Linear stability indicates that this steady solution
is unstable and the unstable eigenvalues are reported in table 1. Figure 5 shows that
after t = 15 the instability of the steady solution becomes visible and at later times,
t > 18, it is saturated and the system reaches an oscillatory state. The core flow
rate, after saturation of the instability, varies between the values of 0.736 and 1.039,
with {Q1} = 0.85 and that of the annular fluid 1− {Q1} = 0.15. Thus, although
counterflow of the two phases occurs in the linear regime, concurrent flow does take
place in the nonlinear one. The temporal oscillation frequencies in the linear and the
nonlinear regimes equal 7.593 and 5.261, respectively. Comparing these frequencies
with the linear stability results (table 1) reveals that linear theory is again inadequate
to predict the nonlinear frequencies, despite the fact that there is good agreement
with the computed frequency obtained by integrating the dynamic equations for small
times. The agreement of the frequency of the most unstable eigenmode (eigenvalue 2
in table 1) to the graphically computed one in addition to the fact that the nonlinear
shape of the interface is mainly composed of two humps, in accordance with the
eigenvector for the interface of the most critical mode, lead to the conclusion that the
most unstable mode is indeed excited. It is worth noting that we should not expect
exact replication of the linear frequencies even when the system is very close to the
steady solution because we do not seed the initial condition with any unstable mode.
As a result, we do not control which mode will be excited and a possible excitation of
more than one unstable mode cannot be excluded, especially when the growth rates
of the unstable modes are quite close to each other, as in this case.

Figure 6(a) shows the streamlines as well as the interface of the computed steady
solution. This steady interface has changed considerably compared to the steady
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Figure 6. Flow fields that correspond to (a) the steady solution, (b) t = 22.4825, (c) t = 22.7325,
(d ) t = 22.9825, (e) t = 23.2325 (α, Λ,N, V , µ, ρ, Re,W , F) = (0.9, 1, 1, 0.553, 0.00166, 1.09945, 0.1, 10.2,
23.9).

shape shown in figure 3(a) since its maxima and minima are less pronounced. The
interface varies between the values 0.671 and 0.750 and it appears to have a minimum
to the right of the tube maximum (the mid-plane). Although there are again closed
streamlines located directly above the interface, these occupy a larger portion of
annular fluid domain, leaving a much smaller region for the water to flow backwards
in the direction of gravity in contrast to case 1. It is also worth noting that even
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in this case the closed streamlines are located at the troughs of the steady interface,
similar to figure 3(a). The comparison of the axially averaged interfacial velocities
that correspond to the steady solutions of cases 1 and 2 shows that increasing Re by
an order of magnitude causes a drastic decrease in 〈ui〉 as this is equal to 5.104 here,
whereas in case 1 it is equal to 21.144. This trend is easily explained, since increasing
Re from 0.01 to 0.1, decreases both F from 2389.6 to 23.9 and the volumetric flow
rate of the oil from 5.098 to 1.279 and thus, the axially averaged interfacial velocity.

Snapshots of the interfacial shapes as well as the associated streamlines at different
times can be seen in figures 6(b)–6(e). In line with figures 3(b)–3(e), we can see
that the interfacial shapes are not steady even for an observer moving with the
interface. Furthermore, the amplitude of the saturated travelling wave is smaller than
the previous case, i.e. increasing Re reduces the saturation amplitude of the travelling
wave, still, the wave exhibits more pronounced maxima and minima compared to
the steady solution (figure 6a). The interface is mainly composed of two humps and
when they enter the expanding portion of the tube, they decelerate and increase
their amplitudes, whereas upon entering the contracting portion of the tube, they
accelerate and decrease their amplitudes. This phenomenon produces waves that
repel and attract each other periodically without ever colliding. The instantaneous
axially averaged core flow rates are equal to 0.865, 0.821, 0.854 and 0.897, respectively,
whereas the corresponding values of the axially averaged interfacial velocities are
3.500, 3.311, 3.426 and 3.596, respectively. The difference between figures 3(b)–3(e)
and figures 6(b)–6(e) is that in the latter there are open streamlines located below
the closed ones, which run along the annular fluid domain in contrast to case 1,
since here we deal with concurrent flow of both fluids. In these figures, it can
also be seen that each crest of the interface is encircled by a streamline with a
zero value streamfunction, since it ends at the solid wall. Moreover, the intensity
of the vortex increases in the expanding portion of the tube and diminishes in the
contracting one. These vortices force the open streamlines in the water to bend
downwards, cross the interface and enter the core flow region, whereas far from them
they bend upwards and enter the annular region again. Note here that in the sequence
of figures 6(b)–6(e), small vortices with streamlines intersecting the tube wall appear
and disappear periodically. In the sequence of figures 6(b) and 6(c), we also observe
that the large vortex that encircles the right-hand crest in figure 6(b), evolves into
two smaller ones, which are both located inside a loop ending at the wall, as the
crest of the interface approaches the solid surface. In figure 6(d ), the previous two
small vortices are completely disintegrated and then they are absorbed by the vortex
that is located above the oncoming crest (figure 6e). Furthermore, the velocity of the
interface at its crests appears to be smaller than the values at its troughs. Thus, the
larger the amplitude of the wave, the steeper the wave becomes, which is consistent
with the Kuramoto–Shivashinsky wave steepening predictions. Possibly then, if we
increase the Reynolds number further, the waves may break up forming small drops
of the core fluid inside the annular one.

3.3. Core fluid with large Reynolds number (Re = 0.25, case 3)

Figures 7 and 8 (case 3) correspond to an even larger value of the Reynolds number
(Re = 0.25) than the previous two cases. The time evolution of the core flow rate
for this case is given in figure 7. It can be seen that the core flow rate, which
initially is equal to 0.985, departs from the steady solution executing oscillations
of frequency 6.46, which compares favourably with the computed linear temporal
frequency (eigenvalue 2 in table 1). After t = 15, the core flow rate reaches an
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Figure 7. Time evolution of the core flow rate
(α, Λ,N, V , µ, ρ, Re,W , F) = (0.9, 1, 1, 0.553, 0.00166, 1.09945, 0.25, 1.632, 3.823).

oscillatory state of constant amplitude between the values 0.55 and 0.98 of frequency
approximately 4.85, while its time averaged value equals {Q1} = 0.7. Although for
this value of the Reynolds number concurrent flow of the two phases occurs in both
the linear and the nonlinear regime, the solution after saturation of the instability
is associated again with a lower average volumetric flow rate of the oil than the
steady value (0.7 < 0.985). The streamlines as well as the interface corresponding
to the steady solution are given in figure 8(a), where it can be seen that there are
open streamlines both below and above the closed streamlines in the region occupied
by water. The open streamlines on top indicate that water exits the tube from its
left-hand side resulting in this way in a negative volumetric flow rate, whereas open
streamlines next to the interface result in a positive water flow rate. Their net effect
on the flow of the water is that water is flowing from left to right, since its flow rate
computed using figure 7 (t = 0) is small but positive; it is equal to 0.015. The steady
interface is virtually straight as it varies between the values 0.69 and 0.72, figure 8(a),
whereas the time periodic interface is composed again of two crests per unit cell and
varies between the values 0.604 and 0.882 at t = 19.15.

Snapshots of the flow field of the two phases corresponding to the time periodic
solution are shown in figures 8(b)–8(e). The instantaneous axially averaged core
flow rates at these time instances are found to be 〈Q1〉 = 0.71, 0.716, 0.71 and 0.70,
respectively. In these four figures we can see that the closed streamlines are above
the open ones close to the solid wall, in contrast to figures 3(b)–3(e). Comparing
the averaged values of the core flow rate within one temporal period for the three
different values of the Reynolds numbers (cases 1–3) it appears that the larger the
Reynolds number, the smaller the variation of the core flow rate is. More specifically,
the variation of the core flow rate in the three examined cases is 10%, 9% and
2%, respectively. Keeping in mind that in a straight tube the ‘bamboo’ waves were
travelling with a constant wave speed without being deformed and, thus, the averaged
core flow rate was constant in time in addition to the fact that the constriction ratio
here is close to 1, the decreasing variation of the core flow rate with increasing Re
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Figure 8. Flow fields that correspond to (a) the steady solution, (b) t = 18.25, (c) t = 18.55,
(d ) t = 18.85, (e) t = 19.15 (α, Λ,N, V , µ, ρ, Re,W , F) = (0.9, 1, 1, 0.553, 0.00166, 1.09945, 0.25,
1.632, 3.823).

indicates a tendency towards the limit of waves of constant wave speed similar to what
has been observed in a straight tube (Li & Renardy 1999; Kouris & Tsamopoulos
2002). This conclusion is also in accordance with the computed mean interfacial
velocities of the saturated solution. More specifically, the amplitude of the variation
of the velocities in case 1, 2 and 3 is 0.3405, 0.1425 and 0.0315, respectively. Comparing
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now the amplitude of the time-dependent solutions shown in figures 3, 6 and 8, we
conclude that increasing Re indeed reduces the amplitude of the bifurcating travelling
wave.

4. Moderate constriction ratio (α = 0.8): effect of µ, W and F
Figure 9 (case 4) presents the time evolution of CAF for the following values of the

dimensionless numbers (α, Λ,N, µ, ρ, J, Ga, V , Re) = (0.8, 1, 1, 0.00166, 1.09945, 0.102,
2.4028, 0.552, 0.1). These dimensionless numbers are the same as those of case 2
except for the constriction ratio, which here is equal to 0.8, instead of 0.9. This case
requires a long incubation period for instability to arise. The exponential deviation
in a Q1 vs. time plot becomes visible only for t > 25, whereas for t > 40 the flow
approaches an oscillatory state of constant amplitude (see Kouris 2000). At t = 0,
the steady core flow rate is equal to 0.965, whereas after saturation of the instability,
it varies between the values Q1 = 0.763 and 0.989. Comparing the steady water flow
rates that correspond to cases 2 and 4 (−0.279 and 0.035, respectively) we conclude
that the decrease in the constriction ratio causes water and oil to flow concurrently.
This result is easily explained considering the increase in the tube undulation as a
way of hindering the flow of water in both directions. However, the shear exerted
by the core fluid still drags some of the water along its path and, as a result,
the two fluids flow concurrently even at steady state, in contrast to case 2. The
temporal oscillation frequency is equal to 6.119 initially and 5.6647 at later times. In
particular, the first of these frequencies correlates well with those computed using the
linear theory which are shown in table 2 and more specifically with that corresponding
to the most unstable mode (eigenvalue 2). Although the decrease in the constriction
ratio causes a qualitative difference in the steady-state solution as explained above,
the corresponding averaged oil flow rates of the time periodic solution do not change
appreciably since, in case 2, {Q1} = 0.85 and, in case 4, {Q1} = 0.88.

Figure 9(a) shows the flow field that corresponds to the steady solution. The steady
interface is composed of a single crest per unit cell and varies between the values
0.604 and 0.755 at axial locations of 0.517 and 0.023, respectively, in a cell of total
length 1. Comparison of the steady shape with that corresponding to case 2 reveals
that although both shapes exhibit a minimum at the mid-plane of the tube and a
maximum at its neck, the decrease in the constriction ratio causes greater variations
of the steady interface. The closed streamlines are located in the expanding portion
of the tube and there is no open streamline above them. This verifies the conclusion
that concurrent flow of both phases occurs. The axial mean interfacial velocity of the
steady solution is found to be 〈ui〉 = 4.384.

Figures 9(b)–9(e) show four snapshots of the flow field that correspond to the time
periodic solution, within one temporal period. The computed values of the spatially
mean core flow rates are 〈Q1〉 = 0.800, 0.896, 0.955 and 0.8369, whereas the values of
the axially averaged interfacial velocities are 〈ui〉 = 3.602, 3.994, 4.267 and 3.795. The
characteristic of these figures, in accordance with the previous results, is that there are
two wave crests per unit cell and several vortices of varying strength, which coexist
one inside the other. As the interface travels downstream, new vortices are created,
while others either diminish in intensity or even disappear and reappear periodically.
Of course, these observations are not entirely unexpected, since water flows in the
annulus with viscosity 600 times smaller than that of the oil and values of the Re are
based on oil properties. As a result, the Reynolds number based on the properties
of the water is at least 2 orders of magnitude greater than that we report based on
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Figure 9. Flow fields that correspond to (a) the steady solution, (b) t = 43.05, (c) t = 43.35, (d )
t = 43.65, (e) t = 43.95 (α, Λ,N, V , µ, ρ, Re,W , F) = (0.8, 1, 1, 0.552, 0.00166, 1.09945, 0.1, 10.2, 23.9).

the properties of the oil. It is also interesting that as the interface approaches the
solid wall, especially at axial distances where the radius of the solid wall attains its
minimum value, the region between the free surface and the wall becomes very thin
and no recirculation of water is observed, see the interface maximum in the right-hand
side of figures 9(b)–9(d ). In the case of the straight tube geometry, Li & Renardy
(1999) and Kouris & Tsamopoulos (2001b) have shown that the ‘bamboo’ waves are
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Unstable eigenvalues

Number Case 4 Case 5 Case 6 Case 7

1 0.2340± 1.653i 0.9203± 2.945i 0.7718± 2.430i 3.993± 1.761i
2 0.3708± 6.108i — 0.4414± 2.494i —
3 0.0458± 10.79i — 0.4368± 27.92i —

Table 2. Unstable eigenvalues for: (α, Λ,N, ρ, V , Re,W ) = (0.8, 1, 1, 1.09945, 0.552, 0.1, 10.2); and
case 4: µ = 0.00166, F = 23.9, W = 10.2; case 5: µ = 0.00166, F = 23.9, W = 102; case 6:
µ = 0.00166, F = −23.9, W = 10.2; case 7: µ = 0.0166, F = 23.9, W = 10.2.

closely associated with the presence of small vortices directly above the crests of the
interface which travel downstream with the same speed as the interface. This is not
the case here as the axial variation of the radius of the solid wall causes the creation
of many small vortices not only above the crests of the interface, but also above its
troughs, whereas some of them form and disappear periodically in time. Comparing
now the mean interfacial velocities 〈ui〉 between cases 2 and 4, we conclude that
decreasing α decreases 〈ui〉 of the steady solution and increases the variation of 〈ui〉.
Indeed, in case 2, 〈ui〉 varies between 3.311 and 3.596, whereas in case 4, 〈ui〉 varies
between 3.602 and 4.267.

4.1. Effect of the Weber number (case 5), mechanisms leading to discontinuous
flow of the core fluid

In order to examine the effect of surface tension, we have simulated the core–
annular flow that corresponds to the same values of the dimensionless numbers as
in case 4 except for the inverse Weber number, which is increased by an order of
magnitude, i.e. to W = 102, instead of 10.2. Table 2 indicates that only one unstable
eigenvalue exists now (case 5). The transition from the steady solution to the time
periodic solution causes the core flow rate, which is initially equal to 0.975, to vary
rather irregularly and between the values 0.69 and 0.99, with {Q1} = 0.89 (Kouris
2000). The comparison of these values with those of case 4 makes apparent that the
increase in W by an order of magnitude does not change the core flow rate of either
the steady or the time periodic solution significantly. The fact that the amplitude of
the variation of the core flow rate is much greater than that of case 4 is due to the
fact that here interfacial waves of greater amplitude develop.

This is verified in figure 10, where the steady interface as well as snapshots of
the interface after achieving a quasi-periodic flow can be seen. Also, without doubt,
the saturation amplitude of the bifurcating travelling waves is an increasing function
of the surface tension parameter W , a result which is in accordance with previous
analyses, see Kerchman (1995) and Kouris & Tsamopoulos (2002). In the latter study
(with µ > 1), it has been shown that the increase of the surface tension, apart from
reducing significantly the speed of the travelling wave compared to the undisturbed
interfacial velocity, promotes the creation of lobes which are connected with virtually
flat segments of the interface. This is in qualitative agreement with the experiments
performed by Aul & Olbricht (1990). Of course, those wave shapes do not resemble at
all those shown in figures 10(b)–10(e), which are greatly modified by the periodically
varying solid wall, although they retain a ‘sawtooth’ like shape. As far as the steady
interface is concerned, it varies between the values 0.612 and 0.742 and comparing
these values with those for the steady solution shown in figure 9(a), we conclude that
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(a)
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(c)

(d)

(e)

Figure 10. Flow fields that correspond to (a) the steady solution, (b) t = 42.25, (c) t = 42.75, (d )
t = 43.25, (e) t = 43.75 (α, Λ,N, V , µ, ρ, Re,W , F) = (0.8, 1, 1, 0.552, 0.00166, 1.09945, 0.1, 102, 23.9).

increasing W instead of increasing the amplitude of the steady interface, it decreases
it, which is a direct result of the increased capillary force trying to diminish steady
interfacial waves.

Figure 10(a) shows the steady solution with which the time integration has been
initiated. The mean value of the interfacial velocity for this case is found to be
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〈ui〉 = 4.375. Comparing cases 4 and 5, we conclude that the larger W is, the larger
the region, which the closed streamlines occupy in the annular flow domain. For
the flow fields that correspond to figures 10(b)–10(e) the axially averaged core flow
rates are found to be 〈Q1〉 = 0.856, 1.123, 0.882 and 0.789, whereas the corresponding
axially averaged interfacial velocities are equal to 〈ui〉 = 3.857, 4.971, 4.180 and 3.678;
the larger the value of 〈Q1〉 is, the larger the value of 〈ui〉 becomes. The sequence of
these figures shows that, as the crest of the interface travels downstream, it deforms
considerably and, as a result, allows great variations of the flow field inside the tube.
Only in figure 10(c) is the centre of the vortex located directly above the interface;
in all the other figures the centre of the vortex is either to the right (figure 10b) or
to the left (figures 10d and 10e) of the crest. Common among these instantaneous
flow fields is the existence of only one large vortex inside the tube and, although
in figures 10(b), 10(d ) and 10(e) this vortex is located in the region occupied by
water, this is not the case in figure 10(c), where the interface and portion of the oil
is encircled by the vortex. The fact that the total flow is kept constant throughout
the simulation in addition to the fact that the interface is crossed by the vortex in
figure 10(c) result in a negative flow rate of the water at that instant. Hence, some of
the water exits the tube from its left-hand side. In figure 10(d ), the wave has become
even steeper than that presented in figures 10(b)–10(c) and at the same time it has
increased its amplitude. Further steepening of the wave does not occur; otherwise this
would result in the breakup of the wave (see next simulations). Here, the solid wall
forces the interface downwards and consequently the crest velocity increases, the crest
accelerates and eventually escapes the constriction. Comparing now the interfacial
velocities that correspond to cases 4 and 5, we reach the conclusion that the increase
in W by an order of magnitude, although it does not affect appreciably 〈ui〉 of
the steady solution, increases considerably the variation of 〈ui〉 of the time periodic
solution. This variation in case 5 is between the values 3.678 and 4.971 within one
temporal period.

Next, we examine whether the increase of interfacial tension, apart from giving rise
to travelling waves of larger amplitude, can promote breakup of the interface and
subsequent creation of slugs of core fluid in the continuous stream of the annular
fluid. To this end, we increase the coefficient of surface tension five times compared
to that of case 5, whereas all other dimensionless numbers are kept the same, i.e.
now W = 510. The steady solution, which is used as an initial condition, is almost
flat with a shallow minimum near the tube maximum and a single large vortex above
it (Kouris 2000). Apparently, owing to gravity, water flows against the applied shear
from the core fluid, as in previous cases. However, this solution is unstable and
figure 11(a) shows four different snapshots of the interface taken at time intervals
∆t = 0.25. At t = 6.2 and t = 6.45, the interface is slightly translated downstream in
the axial direction with an increasing amplitude. This is further intensified at t = 6.7,
while the solid line corresponds to the last time step before breakup of the interface
(t = 6.95). These snapshots of the interface, apart from showing the time evolution of
the interface, indicate that the wave amplitude increases exponentially (∼ exp(6.5t))
with time just before breakup.

In figure 11(b), we show to what the flow field evolves just before breakup, at
t = 6.95. Now, two large vortices are located to the left and right of the minimum of
the interface. The left-hand vortex rotates clockwise and pushes core fluid to the left
of the minimum of the interface, while the right-hand vortex rotates counterclockwise
and pushes fluid to the right of the minimum. The net effect is that just before breakup
the core fluid undergoes an extensional flow forming a rather broad minimum, like a
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Figure 11. (a) Interfacial shapes that correspond to · · · · ·, t = 6.2, - - - -, t = 6.45, – · –, t = 6.7,
——, t = 6.95 and flow field that corresponds to (b) t = 6.95, (α, Λ,N, V , µ, ρ, Re,W , F) =
(0.8, 1, 1, 0.552, 0.00166, 1.09945, 0.1, 510, 23.9).

long neck. This neck thins continuously and the interface moves towards the centreline
for mass conservation reasons.

A rather different flow type arises just before breakup, when the core fluid is
the less viscous of the two. It has been shown in earlier stability analysis (Hickox
1971; Kouris & Tsamopoulos 2001a) and dynamic simulations (Kouris & Tsamopou-
los 2002) that such flows are more susceptible to instabilities. Thus, they require a
thinner annular fluid for even temporary stabilization. In figure 12, we present the
time evolution of the CAF for the following values of the dimensionless numbers:
(α, Λ,N, µ, ρ, V , Re,W , F) = (0.8, 1

4
π, 4, 10, 1, 0.826, 0.05, 40 000, 0). These values corre-

spond to a tube consisting of 4 unit cells, the minimum radius of which is 0.8 times its
maximum one, while the axial length of each unit cell is 8 times its maximum radius.
As a result, the total length of the tube is 32 times its maximum radius. The fluid
in the annulus is 10 times more viscous than that in the core, while the fluids have
equal densities and, as a result, gravity does not enter the problem. We have assigned
a very large value to W in order to promote breakup of the fluid/fluid interface
and creation of discontinuous flow of the core fluid similar to the previous case. The
time-evolution of the core flow rate, shown in figure 12(a), exhibits a much longer
incubation period, similar to those observed for CAF in a straight tube with the more
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viscous fluid in the annulus (Kouris & Tsamopoulos 2002). Subsequently, there is an
exponential deviation from the steady solution, but this instability cannot be satu-
rated. The time evolution of the interface towards breakup is shown in figures 12(b)
and 12(c). Here, a small disturbance is followed as it travels and evolves in the tube.
When a trough of the interface enters the expanding portion of the tube, the wave
deformation decreases, a crest is slowly formed and, before entering the next tube
constriction, a trough reappears, albeit with larger amplitude than it had entering
this unit cell. In other words, the tube undulation amplifies the disturbance, but the
interface, except for the portion around the wedge, moves slightly. Our computations
break down just after t = 835.98, and the deformed shape of the interface at that time
is shown in figure 12(c) (solid line). Now the interface seems to form a narrow wedge,
as opposed to a long neck shown in figure 11(a). This finger, being now initiated from
the more viscous annular fluid and directed towards the less viscous one, accelerates
continuously and becomes more pointed as it approaches the axis of symmetry. Fig-
ures 12(b) and 12(c) demonstrate that, as the disturbance is convected downstream, it
increases its amplitude but leaves behind the interface almost undisturbed. Therefore,
this case is convectively unstable.

Figure 12(d ) shows the instantaneous streamlines, the interface (thick line) as well
as the velocity field at t = 835.98. Clearly, there is a great difference between the flow
field corresponding to figure 11(b) and that to figure 12(d ). In the former case, the
two counter-rotating vortices located before and after the trough are responsible for
draining the core fluid and forcing the interface to intersect the centreline, while at
the same time, the neighbouring crest of the interface is moving upwards, towards the
solid wall. Moreover, the velocity field is equally intense in the core and the annular
fluids. In the latter case, the core fluid does not seem to undergo a squeeze flow for
as long as computations are possible. The intensity of the flow in the annular region
is much smaller than that in the core and as a result the interface is responding
to the changes occurring in the flow field of the core and not of the annular fluid.
This last observation is in accordance with the dynamic results presented by Kouris
& Tsamopoulos (2002) for CAF in a straight tube. In that case, we have changed
the inverse Weber number by more than five orders of magnitude, keeping the more
viscous fluid in the annulus and observed that the flow field in the annular domain
was much less intense than that of the core. However, there the maximum value of
W was three times smaller than the present one, but no breakup of the interface was
observed.

4.2. Gravity acts in the flow direction of the core fluid (case 6)

Figures 13 and 14 (Case 6) correspond to the same values of the dimensionless
numbers as those of case 4, except that gravity now acts in the same direction as
the mean flow of the core fluid, in this way accelerating the water. So we use here
F = −23.9 as the value of the inverse Froude number, instead of 23.9. In figure 13
we give the time evolution of the core flow rate computed at the entrance of the
tube. The steady (and for the dynamic simulations initial) flow of the core fluid is
very small, 0.086, because gravity pulls the heavier water in the annulus preferentially
downward. There is an abrupt transition of the core flow rate from this initial value
for t > 30, whereas the new oscillatory state is characterized by a continuous variation
of the core flow rate between the values 0.111 and about 0.6, with {Q1} = 0.27. The
difference between this figure and the previous ones is that now nonlinearity leads
to considerable acceleration of the core and, consequently, deceleration of the water.
More specifically, the mean core velocity in the nonlinear regime is increased by more
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Figure 12 (a–c). For caption see facing page.
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(d)

Figure 12. (a) Time evolution of the core flow rate, instantaneous shapes of the interface for (b)
– · –, t = 806.33, - - - -, t = 810.33, · · · · ·, t = 814.33, ——, t = 818.33, (c) – · –, t = 823.78, - - - -,
t = 827.78, · · · · ·, t = 831.78, ——, t = 835.78, (d ) the flow field corresponding to t = 835.98
(α, Λ,N, V , µ, ρ, Re,W , F) = (0.8, 1

4
π, 4, 0.826, 10, 1, 0.05, 40 000, 0).

than 310% compared to the value that corresponds to the steady state. The computed
frequency of the oscillation using figure 13 is found to be 2.668 in the linear regime
and 3.191 in the nonlinear regime. In other words, the linear frequency is within
the frequencies of the unstable modes predicted by the linear theory, as reported in
table 2.

The steady solution presented in figure 14(a) appears to be very regular, as no
backflow or recirculation of water takes place while the steady interface varies between
the values 0.561 and 0.775. The velocity of the less viscous and heavier annular fluid is
much larger than that of the core fluid and neither varies considerably along the tube.
In the scale of this figure, the oil in the core seems to have an almost uniform (and
zero) velocity in each cross-section compared to the velocity of the water, which has
a parabolic profile in the radial direction. The interface (thick line) smoothly follows
the tube wall, and its maxima and minima almost coincide with those of the tube
wall. This is different from the situation in figure 9(a), in which the interface maxima
almost coincide with the tube minima and vice versa, because there gravity acts
against the flow of the core fluid and forces the heavier annular fluid in the opposite
direction to the core flow. Thus, the water flow rate in the former case is much smaller
than in the latter, and for that reason there is a great difference between the core flow
rates of the steady solution, see figure 13 (0.086� 0.965). Furthermore, the position
of the crest of the steady interface is directly responsible for the appearance of the
closed streamlines in the annular flow domain, see figure 9(a), in contrast to the flow
field shown in figure 14(a), where no closed streamlines exist. For the same reason, the
mean interfacial velocities of the steady solutions of cases 4 and 6 deviate so much
from each other, as in case 4 it is equal to 4.384 and in case 6 it is equal to 0.437.

Figures 14(b)–14(e) show the flow field as well as the interface at different times after
saturation of the instability. For these snapshots of the flow field, the corresponding
values of the spatially mean core flow rates are 〈Q1〉 = 0.308, 0.316, 0.226 and 0.219,
while the instantaneous axially averaged interfacial velocities are 〈ui〉 = 1.387, 1.399,
0.992 and 0.972, respectively. In all figures 14(b)–14(e), we observe that there is a
great difference of the intensity of the flow between the more viscous oil and the
water, and both vary along the tube in contrast to the steady flow (figure 14a). The
core fluid is flowing primarily due to shear exerted by the water. This conclusion is in
line with the observation that larger oil velocities are observed, not where the oil flow
cross-section is minimized, but where larger velocities arise in the annular film. For
mass conservation reasons, this occurs where the cross-section in the annular region is
minimized, i.e. around the maxima of the interface in figures 14(b)–14(e). The strong
effect of gravity on the dynamics of the CAF becomes evident by comparing the
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Figure 13. Time evolution of the core flow rate
(α, Λ,N, V , µ, ρ, Re,W , F) = (0.8, 1, 1, 0.552, 0.00166, 1.09945, 0.1, 10.2,−23.9).

corresponding values of 〈ui〉 of cases 4 and 6. In the former case, gravity decreases
further the interfacial velocity compared to that of the steady solution, whereas in
the latter the opposite occurs.

4.3. Effect of viscosity ratio, µ (case 7)

In order to examine the effect of the viscosity ratio, we have increased its value
compared to that of case 4 by an order of magnitude, i.e. to µ = 0.0166 (case 7),
instead of 0.00166. The core flow rate at the entrance of the tube, after an incubation
period (0 < t < 300), attains an oscillatory state of frequency 1.841 in the linear
and 1.683 in the nonlinear regime. The core flow rate that corresponds to the steady
solution is equal to 0.796, whereas it varies in the nonlinear regime between the
values 0.693 and 0.905, with {Q1} = 0.777. Comparing the values of the core flow
rate of the steady solution with that of the time periodic solution, we conclude again
that the nonlinear regime is associated with a small deceleration of the core fluid,
which is approximately 2%, in contrast to case 4, where it is 9%. Linear theory
reveals that the steady solution is unstable with only one unstable mode (table 2),
whereas the frequency computed using linear stability theory is exactly the same as
that integrating in time the governing equations for small times. Figure 15(a) shows
the steady flow with a single vortex located in the mid-plane of the tube. The axially
mean interfacial velocity for this case is equal to 〈ui〉 = 3.469. The steady shape of the
interface is slightly curved pointing towards the expansion, whereas the core velocity
field approaches that of plug flow. The increase of the viscosity ratio by an order
of magnitude relocates the maximum of the steady interface (compare figures 9a
and 15a), in a similar way with the change in the direction of gravity, case 6. Using
the same arguments as in case 6, the decrease of the steady core flow rate and the
deviation of the undisturbed interfacial velocities of cases 4 and 7 with increasing the
viscosity ratio are easily explained.

Figures 15(b)–15(e) show the flow field within one temporal period after complete
saturation of the instability. The computed average core flow rates at these instances
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Figure 14. Flow fields that correspond to (a) the steady solution, (b) t = 68.55, (c) t = 69.05, (d )
t = 69.55, (e) t = 70.05 (α, Λ,N, V , µ, ρ, Re,W , F) = (0.8, 1, 1, 0.552, 0.00166, 1.09945, 0.1, 10.2,−23.9).

are found to be 〈Q1〉 = 0.783, 0.789, 0.766 and 0.763, respectively, and no back flow
of the annular fluid is observed. In fact, the core fluid drags the annular fluid more
effectively here in both steady and periodic states, because of the increased viscosity
of the latter. The computed values of the interfacial velocities are 〈ui〉 = 3.442,
3.441, 3.416 and 3.424, respectively. Comparing these figures and figures 9(b)–9(e),
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Figure 15. Flow fields that correspond to (a) the steady solution, (b) t = 502.45, (c) t = 503.3,
(d ) t = 504.15, (e) t = 505 (α, Λ,N, V , µ, ρ, Re,W , F) = (0.8, 1, 1, 0.552, 0.0166, 1.09945, 0.1, 10.2, 23.9).

we conclude that the amplitude of the travelling waves is a decreasing function of
the viscosity ratio. In previous linear stability analyses, Kouris & Tsamopoulos (2000,
2001a) have shown that CAF remains stable within a limited range of viscosity
ratios that depends on the rest of the problem parameters. Thus, with increasing µ
starting from very small values we are approaching the neutral stability boundary and
thus we expect the decrease in the saturation amplitude of the bifurcating solution
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and the decreased number of unstable eigenvalues reported earlier. We can also see
that a vortex persists in the region occupied by the annular film in all times within
one temporal period, but its position and strength are varied periodically in time
without following closely the single crest of the interface. Additionally, the number
of vortices of this type compared to that of case 4 is greatly reduced. This result is
not unexpected, as the effective Reynolds number of the annular fluid is decreased
here by an order of magnitude compared to that of case 4.

It is worth noting that the effect of the number of the unit cells that comprise the
undulating tube has been investigated for this case also. More specifically, we have
doubled the number of unit cells for case 7 and we have repeated the time integration.
Our dynamic results, which are not shown for the sake of brevity, are exactly the
same as those presented for the case with N = 1, validating in this way the use of
a single cell. At this point, it is interesting to note the difference between the linear
and the nonlinear temporal frequencies of cases 1–7. In cases 1– 4 and 7, the linear
frequency is greater than the nonlinear frequency and, more specifically, the greater
the effect of gravity (cases 1–3), the larger the deviation between the frequencies,
where gravity opposes the flow direction of the annular film. However, in cases 5 and
6, where gravity accelerates the annular fluid and surface tension is increased, the
nonlinear frequency is greater than the linear frequency.

5. Small constriction ratio (α = 0.5) with µ > 1 (case 8)
In figures 16–18, we present the case with a fairly small (α = 0.5) constriction ratio

and the less viscous fluid is centrally located (µ = 2). Hence, this case is above the
upper neutral branch predicted by linear analysis (Kouris & Tsamopoulos 2001a).
The two fluids are of equal density (ρ = 1) and, as a result, gravity does not enter the
problem (F = 0). The constricted tube is composed of 2 unit cells (N = 2) and thus,
the total length of the tube is approximately 12.5 times its maximum radius. The time
integration has been initiated using the steady-state solution seeded with random
disturbances of very small amplitude. The time evolution of the core flow rate can
be seen in figure 16(a). The core flow rate at t = 0 and before measurable growth
of the instability is 〈Q1〉 ∼ 0.9984, whereas after saturation it varies between the
values 〈Q1〉 = 0.996 and 1.001 and its time-averaged value is equal to {Q1} = 0.9984.
Apparently, the average core flow rate that corresponds to the time periodic solution is
equal to the (unstable) steady solution. Concurrent flow occurs in both the linear and
the nonlinear regime, but the flow rate of the annular fluid is very small (0.002� 1).
This is mainly caused by the fact that the core volume fraction used in this case
is close to 1 (V = 0.842) and the small value of the constriction ratio creates large
grooves inside which most of the annular fluid is trapped. Thus, only a small amount
of the annular fluid is dragged by the core fluid, while the rest of it recirculates. This
observation holds not only for the steady solution, but also for the time periodic
solution, as it will be presented next. The mean value of the steady interfacial velocity
equals 〈ui〉 = 0.225. Figure 16(a) shows a temporal oscillation of high frequency 4.488
that appears in spurts twice during each long period corresponding to the second,
much lower frequency, 0.0583. The spurt that coincides with the step decrease in the
core flow rate has larger amplitude than the other one. Linear theory predicts that the
steady state solution is unstable with only one unstable eigenvalue (0.01159±0.06381i).
Apparently, the linear frequency is comparable and close to the nonlinear one, whereas
the fast oscillation has no counterpart in the linear regime and, thus, it is produced
by nonlinear interactions, as it will be discussed next.
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Figure 16. (a) Time evolution of the core flow rate and (b) instantaneous shapes of
the interface, (- - - -, t = 1123.75, · · · · ·, t = 1151.75, ——, t = 1179.75, – – –, t = 1207.75)
(α, Λ,N, V , µ, ρ, Re,W , F) = (0.5, 1, 2, 0.842, 2, 1, 11, 10, 0).

In figure 16(b), four instantaneous interfacial shapes, as well as the solid surface
(thick line), can be seen. The times they were taken span the long temporal period.
The common characteristic of these shapes is that the interface remains very close
to the solid surface at the neck of the tube, whereas it becomes more deformed on
the left-hand side of each unit cell as the two fluids enter the expanding portion
of the tube. In these locations, a bulge in the interface arises periodically owing to
the interaction of the interface with a vortex that is located in this region and then
disappears. For the same reason, the deformed interface is shifted towards the right of
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the mid-plane of the tube. It can be seen that, the maximum or the minimum of the
crest of the interface in the left-hand unit cell is not attained simultaneously with the
corresponding ones in the right cell. Focusing our attention now on only the left-hand
unit cell, we observe that, as time evolves, the crest of the interface shifts upwards
(points 1, 2 and 3) and, when it is maximized (point 4), it starts decreasing and finally
reaches point 1 at the completion of each cycle. At the same times, the bulge of the
interface is out-of-phase with the previous cycle, since it is slowly disappearing as
the crest is increasing its amplitude, but reappears when the crest of the interface
is maximized, see points 5, 6, 7 and 8. This wave attains its maximum amplitude
in most of the expanding portion of the tube, and its minimum amplitude at its
throat.

The flow fields that correspond to the steady solution, as well as to the time
periodic solution, for the four time instances presented in figure 16(b) are shown in
figures 17(a) and 17(b)–17(e), respectively. The distance between consecutive open
and closed streamlines is constant and in the open ones it is equal to 0.025, whereas
in the closed ones it is equal to 0.0001. Apparently, the flow fields that correspond
to each of the unit cells presented in figure 17(a) are identical with each other,
which is expected since the steady flow field is independent of the number of cells
that comprise the computational domain. Figures 17(b)–17(e) demonstrate the fact
that this symmetry in the steady-state solution breaks and a time-dependent solution
is eventually established. Clearly, we observe that the two vortices that exist in
the steady-state solution continue to exist in the time periodic solution, but now
the intensity of each one varies in time. More specifically, when the intensity of
the right-hand vortex attains its maximum value (figure 17c), the left-hand one
attains its minimum and vice versa. By careful examination of figures 17(b)–17(e),
we conclude that the flow field that occurs in the left-hand tube of figures 17(b)
(17c) is the same as that in the right-hand tube of figure 17(d ) (17e) and the
flow field that occurs in the right-hand tube of figure 17(b) (17c) is the same as
that in the left-hand tube of figure 17(d ) (17e). The mean values of the interfacial
velocities that correspond to figures 17(b)–17(e) are 〈ui〉 = 0.267, 0.208, 0.264 and
0.204, respectively. The resemblance of the interfacial velocity, 〈ui〉, computed for the
flow field shown in figure 17(b) (17c) with that of figure 17(d ) (17e), respectively,
is expected since these flow fields, apart from an axial translation by one unit cell,
are the same. The mean interfacial velocity of the time periodic solution 1

4
(0.267 +

0.208 + 0.264 + 0.204) = 0.235 does not deviate appreciably from that of the steady
interface which is equal to 0.225. Apparently, now that the more viscous fluid flows
in the annulus, the velocity of the interface of the time periodic solution is greater
than that of the steady solution. This increase in the velocity of the interface cannot
be attributed to the effect of gravity, as in case 5. This observation is in accordance
with the results presented in Kouris & Tsamopoulos (2002), where the nonlinear
dynamics of the perfect CAF in a straight tube have been examined. In that case,
it was shown that the velocity of the time dependent interface compared to that
of the undisturbed interface is an increasing function of the viscosity ratio and
when µ > 1 (µ < 1) the nonlinear interface is drifting faster (slower) than the steady
one.

Figure 18 shows the evolution of the deviation, R1(t)−R1, of the instantaneous in-
terface, R1(t), from its steady shape, R1. The first snapshot corresponds to t = 1119.75
and the time difference between consecutive snapshots is ∆t = 4. It is worth noting
that the interface deviation, which is O(10−2), attains its maximum value periodically
and at axial distances 0.5 and 1.5, i.e. where the tube radius is maximized, while the
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(a)

(b)

(c)

(d)

(e)

Figure 17. Flow fields that correspond to (a) the steady solution, (b) t = 1123.75, (c) t = 1151.75,
(d ) t = 1179.75, (e) t = 1207.75 (α, Λ,N, V , µ, ρ, Re,W , F) = (0.5, 1, 2, 0.842, 2, 1, 11, 10, 0).

crests that are formed around these locations decrease in amplitude very fast. Close
observation of this figure reveals the coexistence of a standing and a travelling wave.
The standing wave gives rise to crests and when one crest attains its maximum value
at axial distance 0.325, the next one attains its minimum value at 1.325, whereas
the travelling wave, which is of smaller amplitude, is strangulated every time it goes
through a tube throat. These two waves collide periodically. The low-frequency oscil-
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Figure 18. Time evolution of the interface deviation from the steady solution. The first snapshot
corresponds to t1 = 1119.75 and the time difference between consecutive one is ∆t = 4. Time
increases upwards (α, Λ,N, V , µ, ρ, Re,W , F) = (0.5, 1, 2, 0.842, 2, 1, 11, 10, 0).

lation that can be seen in figure 16(a) is associated with the time that is required by
the progressive wave to travel the whole domain, whereas the high-frequency oscilla-
tion is associated with the time that the stationary and the progressive waves interact.
Ripples are generated because of their interaction and, thus, the core flow rate ex-
hibits high-frequency oscillations. The two different types of wave are of the same
period and, as a result, the progressive wave collides with the standing wave twice
during the time it takes the travelling wave to cross the whole domain. Therefore,
the time evolution of the core flow rate is disturbed by the high-frequency oscillation
twice (figure 16a). Among all cases presented herein, only cases 7 and 8 require more
than 1 unit cell to obtain a solution independent of N (4 and 2 cells, respectively).
In particular, for case 8, it would be interesting to increase N further, something we
have not pursued.

6. Comparison with experiments
De Santos, Melli & Scriven (1991) have carried out experiments in a single vertical

water-wet axisymmetric constricted tube with water and air flowing concurrently and
gravity pointing in the common flow direction of the two fluids. They have used
tubes with a single constriction, the shapes of which were displaced hyperbolas. Their
experiments have revealed certain flow regimes that parallel certain flow regimes in a
packed bed. More specifically, they have reported that, in the case of continuous gas
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and annular film flow, a standing wave develops just below the narrowest point of
the tube and that the liquid film tends to bulge at this particular cross-section. As the
water flow rate is increased further, the amplitude of the standing wave grows and
eventually forms a water bridge trapping, at least temporarily, air and preventing its
flow. The fluid properties, reported in Kolb et al. (1990), are µ̂1 = 1.8× 10−5 Pa s and
ρ̂1 = 1.2 kg m−3 for the air and µ̂2 = 9.3× 10−4 Pa s and ρ̂2 = 103 kg m−3 for water,
while the surface tension coefficient is equal to T̂ = 0.07 kg s−2. De Santos et al. (1991)
have introduced two different Reynolds numbers characterizing each phase ReL and
ReG. If these are combined with the physical properties of the two fluids as well as the
geometry of the tube (constriction ratio and maximum radius), the core to the total
volumetric flow rate as well as our adopted characteristic velocity can be computed
using the following equations:

{Q1} = 1 +
µReL

ρReG
, Ŵ o =

aReG

4{Q1}
µ̂1

ρ̂1R̂max
. (6.1)

Assuming that R̂max = 2.4 mm, R̂min = 1.2 mm, L̂ = 29.4 mm (these parameter values
are given in Melli et al. 1990) and ReL = 140, ReG = 170 (these parameter values are
given in de Santos et al. 1991), we compute the following values of the dimensionless
numbers: (α, Λ, µ, ρ, Re,W , F, {Q1}) = (0.5, 0.51, 51.67, 833.33, 11.39, 1247.2,−1971.79,
0.951). Assuming a single cell (N = 1), the only parameter that should be specified is
the volume ratio V , instead of {Q1}, as explained in § 2, although the experiment has
been performed for fixed {Q1}. Thus, we set V = 0.926. Another difference between
the way the experiment has been performed and the way we simulate it is the periodic
boundary conditions that we impose in the axial direction. As a result, we do not
expect accurate replication of the experimental results. The time integration has
been initiated using the steady solution that corresponds to the above dimensionless
numbers with the steady interface disturbed randomly. Linear stability predicts that
the steady solution is unstable with three unstable modes (0.8035 × 10−2 ± 0.37840i,
0.2228× 10−1± 0.75611i, 0.1304× 10−1± 0.11375× 101i). The instability saturates for
time greater than 380 and the core flow rate varies between the values 0.9965 and
0.9978, with {Q1} = 0.997. The temporal oscillation frequency in the nonlinear regime
is found to be 0.754, i.e. very close to that of the most unstable mode predicted
by the linear theory. We do not present the shape of the time-dependent interface,
as the saturation amplitude of the instability is so small that the time-dependent
and the time-independent solutions virtually coincide. It is worth mentioning that,
for V = 0.926, the resulting mean value of the core flow rate is equal to 0.997
instead of the experimental value of 0.951. Although these two values seem to
be close, when the corresponding ratios of the core to the annular flow rate are
computed, they are found to be very different, because of a division by a very
small number. In the former case this is equal to 332.3, whereas in the latter case it
is 19.4.

For this reason, we have repeated the numerical experiment assuming a smaller
value of the core volume fraction V = 0.892. In this way, the core fluid occupies a
smaller portion of the tube, expecting in this way the resulting annular flow rate
to be closer to the experimental value. For this value of V , the core flow rate
that corresponds to the steady solution is equal to 0.991, whereas after satura-
tion of the instability (t > 117), it varies between the values 0.979 and 0.997 with
{Q1} = 0.991. The linear and the nonlinear temporal oscillation frequencies as com-
puted using dynamic simulation are equal to 2.371 and 2.435, respectively. Linear
stability theory predicts that this steady solution is unstable, since there are four un-
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Figure 19. Instantaneous shapes of the interface of the time periodic solution (· · · · ·, t = 146.65,
- - -, t = 147.45, ——, t = 148.25) (α, Λ,N, V , µ, ρ, Re,W , F) = (0.5, 0.51, 1, 0.892, 51.67, 833.33,
11.39, 1247.2,−1971.79).

stable modes (0.4518× 10−1 ± 0.7977i, 0.1404± 0.1570× 101i, 0.1936± 0.2345× 101i,
0.1419± 0.3200× 101i). Hence, the most unstable mode seems to be excited again. In
figure 19, we present three different snapshots of the interface after saturation of the
instability. The dotted line corresponds to t = 146.65, the dashed line to t = 147.45
and the solid line to t = 148.25. Close observation reveals that a bulge arises first
in the dotted line at axial distance approximately 1.075 (point 1). This bulge is con-
vected downstream and, owing to the periodicity, enters the computational domain
from above and reappears at axial distance approximately 0.925 (point 2, on dashed
line) and then at axial distance 1.17 (point 3, on solid line). Upon comparing these
snapshots with the experimental photograph, we conclude that the predicted variation
of the interface is smaller. The volumetric flow rate ratio of the core to the annular
fluid for this case is equal to 110.1 and, although this value is smaller than that
corresponding to the previous case (332.3), it is much larger than the experimental
value (19.4). We have tried to reduce the imposed volume ratio further by setting
V = 0.876 and we have repeated the calculations. In that case, however, after a
short transient the computations terminate, and the interface becomes quite distorted.
Therefore, with decreasing volume ratio, the travelling waves are more amplified,
whereas they attain their largest amplitudes below the constriction, similar to what
has been observed in the experiments. On the other hand, the fact that we cannot
decrease the volume ratio further in order to approach the experimental operating
conditions requires an explanation. We believe that this deviation results from the
way the experiment has been performed and the boundary conditions that we use
for simulating it. For example, if the steady flow is convectively unstable, something
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we have every reason to believe (see figure 12 and related text), the finite length
of the tube does not provide enough space for the instability to grow, but in our
calculations the imposed periodicity in the axial distance provides sufficient distance
for its development.

7. Conclusions
In this study, we have examined the nonlinear dynamics of the concentric, two-

phase flow of two immiscible, Newtonian fluids in a circular tube of variable
cross-section. The axisymmetric Navier–Stokes equations after being expressed in
the streamfunction–vorticity variables have been discretized using a pseudo-spectral
method in space and the implicit Euler method in time. The governing equations
depend on nine dimensionless numbers and in addition to examining their effect on
the time evolution of the CAF, we have also examined the effect of the condition
used for initiating the time integration.

Assuming first that oil flows in the core and water in the annulus, we have varied
the Reynolds number keeping constant the Galileo and the Ohnesorge number. In
all examined cases, the inception and the subsequent saturation of the instability
leads to flow regimes characterized by reduced oil flow rates and increased flow
rates of the water compared to the steady solution. We have also demonstrated a
case where countercurrent flow occurs in the linear regime and concurrent in the
nonlinear one. We have shown that the presence of the constriction greatly modifies
the well-known ‘bamboo’ waves that appear in straight tubes since the resulting
waves travel with a non-constant wave speed and shape. More specifically, we have
observed that, often but not always, the larger the amplitude of the wave, the
smaller its velocity. The presence of the constriction forces the wave to deform as
it travels downstream and when the wave is composed by at least two crests these
appear to repel and attract each other periodically in time. We have also examined
the effect of the initial condition and, when it is composed of the perfect steady
CAF in addition to linear but random disturbances, the fluid/fluid interface exhibits
chaotic behaviour similar to what has been observed in the case of the straight tube
geometry.

The increase of the viscosity ratio and the decrease in the gravity parameter F lead
to decrease in the saturation amplitude of the instability. In contrast, the increase in
the surface tension parameter W causes increase in the saturation amplitude of the
instability and in some cases can induce breakup of the interface leading in this way
to discontinuous flow of the core fluid. We have simulated two different cases, which
lead to breakup of the interface and are both characterized by large values of W . In
the first one, where the more viscous fluid is centrally located, a neck of the interface
is formed and two counter-rotating vortices appear to its left and to its right. These
cause drainage of the core fluid forming a long neck. In the other case where the
more viscous fluid is located in the annulus, the formation of a finger of annular fluid
pointing towards the less viscous fluid is observed.

Finally, the constriction ratio has been decreased further in an attempt to simulate
as closely as possible the flow regime in a trickle bed reactor. In this case, we have
assumed values of the parameters so that water flows in the annulus and air in the
core of the tube. Travelling waves develop onto their common interface, similar to
what has been observed in experiments.
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